查询结果:   林海波,周庭,张毅.基于指尖角度集核密度估计手势特征提取[J].计算机应用与软件,2016,33(9):195 - 198.
中文标题
基于指尖角度集核密度估计手势特征提取
发表栏目
图像处理与应用
摘要点击数
759
英文标题
GESTURE FEATURE EXTRACTION BASED ON KERNEL DENSITY ESTIMATION OF FINGERTIP ANGLE SET
作 者
林海波 周庭 张毅 Lin Haibo Zhou Ting Zhang Yi
作者单位
重庆邮电大学信息无障碍工程研发中心 重庆 400065     
英文单位
Engineering Research and Development Center of Information Accessibility,Chongqing University of Posts and Telecommunications,Chongqing 400065,China     
关键词
手势特征提取 指尖角度集 核密度估计 形状匹配 实时性和鲁棒性
Keywords
Hand gesture extraction Fingertip angle set Kernel density estimation Shape matching Real-time property and robustness
基金项目
科技部国际科技合作项目(2010DFA12 160)
作者资料
林海波, 副教授,主研领域:智能系统与机器人。周庭,硕士生。张毅,教授。 。
文章摘要
针对手势识别实时性和鲁棒性不足的问题,提出基于指尖角度集核密度估计的特征提取方法。通过对一般手势定义指尖角度集并提取指尖角度集核密度估计特征。为解决形状匹配的相位漂移问题和进一步提高实时性,对该特征集有效区间归一化和均匀采样得到指尖角度集核密度估计序列。基于互相关系数形状匹配算法进行手势识别。实验分析表明,采用该特征提取方法的任意手势识别实时性和鲁棒性比现有方法有显著提高。
Abstract
We propose the hand gesture feature extraction method, which is based on kernel density estimation of fingertip angle set, for the problems of gesture recognition in lacking robustness and real-time property. For common gestures, the method extracts kernel density estimation of fingertip angle set by defining fingertip angle set. In order to solve the phase shift of shape matching and to further increase the real-time property, the method normalises the effective range of feature set and samples uniformly so as to obtain the estimation sequence of kernel density of fingertip angle set. The hand gesture recognition is achieved based on the shape matching of cross-correlation coefficient. It is demonstrate by the experiments that the real-time performance and robustness in arbitrary gesture recognition using the proposed feature extraction method are significantly improved compared with current method.
下载PDF全文