查询结果:   陈淑君,周永霞,方勇军.基于整体外观特征的植物种类识别研究[J].计算机应用与软件,2017,34(9):222 - 227.
中文标题
基于整体外观特征的植物种类识别研究
发表栏目
图像处理与应用
摘要点击数
777
英文标题
THE PLANT SPECIES RECOGNITION BASED ON THE WHOLE APPEARANC FEATURES
作 者
陈淑君 周永霞 方勇军 Chen Shujun Zhou Yongxia Fang Yongjun
作者单位
中国计量大学信息工程学院 浙江 杭州 310018 杭州吾思智能科技有限公司 浙江 杭州 310018    
英文单位
College of Information Engineering,China Jiliang University,Hangzhou 310018, Zhejiang, China Hangzhou Wusi Intelligent Science and Technology Co. Ltd., Hangzhou 310018, Zhejiang, China    
关键词
普残差法 SIFT 视觉词包模型 支持向量机 极限学习机
Keywords
Spectral residual SIFT Bag-of-visterms Support vector machine Extreme learning machine
基金项目
作者资料
陈淑君,硕士生,主研领域:计算机视觉。周永霞,副教授。方勇军,工程师。 。
文章摘要
提出一种基于整体植物外观特征提取的植物自动识别方案。首先,用普残差法对植物图像进行显著性区域检测,较粗略地得到植物对象,再结合色调信息进行细分割。接着提取该对象区域的SIFT特征作为底层局部特征,建立视觉词包模型,最后设计分类器进行分类。选取了9种常见的室内盆栽,每种植物各28个样本。在实验中,分别对比当前流行的 BP神经网络、SVM和ELM三种分类器的分类性能。实验结果发现,支持向量机和极限学习机有较好的分类效果,识别率可以达到90%左右。这对植物识别的研究及应用推广都具有一定的积极作用。
Abstract
In this paper, we propose an algorithm for plant species recognition based on whole appearance features. First, the Spectral Residual method was adopted in salient region detection to segment the plant object roughly. And then, the hue information was used to obtain the precise object. Second, SIFT in the object region was extracted to build the BOV model. Finally, three classifiers were designed and implemented to classify the plant species. In our experiments, there were nine different plant species, and 28 examples of each species. BP neural network, SVM and ELM, these three different classifiers were implemented and compared. The experimental results show that the SVM and ELM classifiers were better than BP neural network, and are able to identify about 90% of these plants correctly. It is important for the research and application of plant species recognition.
下载PDF全文