查询结果:   项铁铭,王建成.改进的多目标粒子群优化算法[J].计算机应用与软件,2017,34(9):302 - 305.
中文标题
改进的多目标粒子群优化算法
发表栏目
算法
摘要点击数
880
英文标题
AN IMPROVED MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION ALGORITHM
作 者
项铁铭 王建成 Xiang Tieming Wang Jiancheng
作者单位
杭州电子科技大学天线与微波技术研究所 浙江 杭州 310018     
英文单位
Institute of Antenna and Microwaves,Hangzhou Dianzi University,Hangzhou 310018,Zhejiang,China     
关键词
外部档案 均匀初始化 快速支配策略 多目标粒子群优化算法 粒子信息档案
Keywords
External archive Uniform and random initialization Fast control strategy MOPSO Particle information archive
基金项目
作者资料
项铁铭,副教授,主研领域:智能优化算法,多目标优化,现代天线设计。王建成,硕士生。 。
文章摘要
为提高解决多目标优化问题的能力,提出一种改进的多目标粒子群优化算法。该算法采用均匀随机初始化方法初始种群,采用快速支配策略选取非支配解,生成外部档案;通过比较粒子连续几代的更新情况来判断是否陷入局部最优并相应地采取不同的更新策略,同时引入变异因子对粒子进行扰动。实验结果表明,在世代距离GD(Generational Distance)和空间评价方法SP(Spacing)性能指标上,改进之后的算法与另外几种对等算法相比,具有显著的整体优势。
Abstract
In order to improve the ability to solve the problem of multi-objective optimization (MOPSO), an improved multi-objective particle swarm optimization algorithm (IMOPSO) is proposed. Using IMSPSO, initial population was produced by a uniformly random initialization approach, and non-dominated solutions were selected by fast control strategy to generate the external archive. By comparing the successive generations of particles, we could judge whether they felled into local optima and adopted different updating strategies. At the same time, a disturbance item was added to the particle’s updating. The experimental results show that the proposed algorithm significantly surpasses other algorithms in terms of GD(Generational Distance), SP(Spacing).
下载PDF全文