• 中国科技论文统计源期刊(中国科技核心期刊)
  • 中国科学引文数据库(CSCD)来源期刊(2015-2016)
  • 万方数据-数字化期刊群全文收录期刊
  • 美国《乌利希国际期刊指南》收录期刊
  • 全国中文核心期刊(2023)
  • 中国学术期刊综合评价数据库来源期刊
  • 中文科技期刊数据库(全文版)收录期刊
  • 美国《剑桥科学文摘》收录期刊

基于残差网络和注意力机制的夜间航运识别

段家家, 张鸿

段家家, 张鸿. 基于残差网络和注意力机制的夜间航运识别[J]. 计算机应用与软件, 2024, 41(12): 138-145. DOI: 10.3969/j.issn.1000-386x.2024.12.020
引用本文: 段家家, 张鸿. 基于残差网络和注意力机制的夜间航运识别[J]. 计算机应用与软件, 2024, 41(12): 138-145. DOI: 10.3969/j.issn.1000-386x.2024.12.020
Duan Jiajia, Zhang Hong. NIGHT SHIPPING IDENTIFICATION BASED ON RESIDUAL NETWORK AND ATTENTION MECHANISM[J]. Computer Applications and Software, 2024, 41(12): 138-145. DOI: 10.3969/j.issn.1000-386x.2024.12.020
Citation: Duan Jiajia, Zhang Hong. NIGHT SHIPPING IDENTIFICATION BASED ON RESIDUAL NETWORK AND ATTENTION MECHANISM[J]. Computer Applications and Software, 2024, 41(12): 138-145. DOI: 10.3969/j.issn.1000-386x.2024.12.020

基于残差网络和注意力机制的夜间航运识别

基金项目: 

国家自然科学基金项目(61373109)。

详细信息
    作者简介:

    段家家,硕士生,主研领域:视频识别,图像处理。张鸿,教授。

  • 中图分类号: TP391.4

NIGHT SHIPPING IDENTIFICATION BASED ON RESIDUAL NETWORK AND ATTENTION MECHANISM

  • 摘要: 针对常规的深度学习模型对夜间监控视频进行识别的效果不佳,提出一种基于残差网络和注意力机制的夜间航运事件的识别方法。增强夜间监控视频生成的暗光图像中的光照,采用SE-R2(2+1)模型对增强图像组合成的视频进行识别。该识别模型基于R(2+1)D模型,通过改进模型的激活结构,提升模型的泛化能力。嵌合SENet网络来提高模型的表征能力。实验结果表明,在增强后形成的数据集下,该方法识别准确率达到了88.2%,验证了模型的有效性。
    Abstract: Aimed at the poor performance of conventional deep learning models in identifying night surveillance videos, a method for identifying night shipping events based on residual network and attention mechanism is proposed. The illumination in the dark image generated by the night surveillance video was enhanced, and the SE-R2 (2+1) model was used to identify the video combined by the enhanced image. The recognition model was based on the R(2+1)D model. By improving the activation structure of the model, the generalization ability of the model was improved. At the same time, the SENet network was embedded to improve the characterization ability of the model. Experimental results show that under the enhanced dataset, the recognition accuracy of the proposed method reaches 88.2%, which verifies the effectiveness of the model.
计量
  • 文章访问数:  9
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-18

目录

    /

    返回文章
    返回