• 中国科技论文统计源期刊(中国科技核心期刊)
  • 中国科学引文数据库(CSCD)来源期刊(2015-2016)
  • 万方数据-数字化期刊群全文收录期刊
  • 美国《乌利希国际期刊指南》收录期刊
  • 全国中文核心期刊(2023)
  • 中国学术期刊综合评价数据库来源期刊
  • 中文科技期刊数据库(全文版)收录期刊
  • 美国《剑桥科学文摘》收录期刊

基于SE-U-Net预测网络的视频异常事件检测方法

王伟胜, 王来花, 贾晴, 赵月

王伟胜, 王来花, 贾晴, 赵月. 基于SE-U-Net预测网络的视频异常事件检测方法[J]. 计算机应用与软件, 2024, 41(12): 154-160. DOI: 10.3969/j.issn.1000-386x.2024.12.022
引用本文: 王伟胜, 王来花, 贾晴, 赵月. 基于SE-U-Net预测网络的视频异常事件检测方法[J]. 计算机应用与软件, 2024, 41(12): 154-160. DOI: 10.3969/j.issn.1000-386x.2024.12.022
Wang Weisheng, Wang Laihua, Jia Qing, Zhao Yue. VIDEO ABNORMAL EVENT DETECTION BASED ON SE-U-NET PREDICTIVE NETWORK[J]. Computer Applications and Software, 2024, 41(12): 154-160. DOI: 10.3969/j.issn.1000-386x.2024.12.022
Citation: Wang Weisheng, Wang Laihua, Jia Qing, Zhao Yue. VIDEO ABNORMAL EVENT DETECTION BASED ON SE-U-NET PREDICTIVE NETWORK[J]. Computer Applications and Software, 2024, 41(12): 154-160. DOI: 10.3969/j.issn.1000-386x.2024.12.022

基于SE-U-Net预测网络的视频异常事件检测方法

基金项目: 

国家自然科学基金项目(61601261)

详细信息
    作者简介:

    王伟胜,硕士生,主研领域:计算机视觉,视频异常检测。王来花,副教授。贾晴,硕士生。赵月,硕士生。

    通讯作者:

    王来花

  • 中图分类号: TP391

VIDEO ABNORMAL EVENT DETECTION BASED ON SE-U-NET PREDICTIVE NETWORK

  • 摘要: 针对视频异常检测中存在的数据不平衡问题,提出一种基于SE-U-Net预测网络的视频异常检测方法。该方法提取视频帧的显著性图,并将其制作成掩膜对数据进行预处理;利用预处理后的数据对预测模型进行训练,为了使预测模型更关注前景区域的优化,结合注意力机制设计一组新的损失函数用于约束模型的训练。在测试阶段设计一个新的异常评价分数计算方法,通过仅计算视频中显著性区域的预测误差来进行异常检测,缓解数据不平衡问题。利用公共数据集进行相关对比实验以及消融实验验证该方法的有效性。
    Abstract: Aimed at the problem of data imbalance in video anomaly detection, an anomaly video detection method based on SE-U-Net predictive network is proposed. We extracted the saliency map of the video frame and made it into a mask to preprocess the data. We used the preprocessed data to train the prediction model. In order to make the prediction model pay more attention to the optimization of the foreground area, this paper combined the attention mechanism, and a new set of loss functions were designed to constrain the training of the model. In addition, in the testing phase, this paper designed a new anomaly evaluation score calculation method, and anomaly detection was performed only by calculating the prediction error of the saliency region in the video, which alleviated the problem of data imbalance. Public datasets for comparative experiments and ablation experiments were used to verify the effectiveness of the proposed method for abnormal event detection.
计量
  • 文章访问数:  17
  • HTML全文浏览量:  1
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12

目录

    /

    返回文章
    返回