基于时序光流与微表情的人脸活体识别

FACE RECOGNITION IN VIVO BASED ON TEMPORAL OPTICAL FLOW AND MICRO-EXPRESSION

  • 摘要: 人脸活体检测模型存在着泛化性较差、复杂度高等问题,从而导致不能有效识别新假体攻击类型。基于此,该文提出一种基于时序光流和微表情人脸活体检测模型(FT-CNN)。该模型由TVNet-DTSCNN和Attention CNN-LSTM卷积网络组成。TVNet-DTSCNN对输入的时序人脸帧分别进行光流预测和微表情提取,Attention CNN-LSTM提取人脸视频中的运动细节线索并放大,使模型学习到活体和假体人脸的鲁棒性特征。在CASIA、CASIA-SURF和MSU-MFSD数据集上的训练和测试结果表明,FT-CNN在准确率(Acc)、平均错误率(HTER)和泛化性上的表现相比之前的模型均显著提升。

     

    Abstract: Insufficient generalization and complexity in face anti-spoofing detection models results in a poor performance targeting on new face attack algorithm. Therefore, a face recognition model in vivo (FT-CNN) is proposed based on optical flow estimate and micro-expression in face. The model consisted of TVNet-DTSCNN and Attention CNN-LSTM. TVNet-DTSCNN performed optical flow prediction and micro-expression extraction on the input time-series face frames, and attention CNN-LSTM extracted and magnified the motion detail cues in the face video, which made the model to learn the robust feature for both live and prosthetic faces. Experiments on CASIA, CASIA-SURF and MSU-MFSD datasets indicate that the performance of FT-CNN in accuracy (Acc), average error rate (HTER) and generalization is significantly improved compared with the previous models.

     

/

返回文章
返回