• 中国科技论文统计源期刊(中国科技核心期刊)
  • 中国科学引文数据库(CSCD)来源期刊(2015-2016)
  • 万方数据-数字化期刊群全文收录期刊
  • 美国《乌利希国际期刊指南》收录期刊
  • 全国中文核心期刊(2023)
  • 中国学术期刊综合评价数据库来源期刊
  • 中文科技期刊数据库(全文版)收录期刊
  • 美国《剑桥科学文摘》收录期刊

基于类别一致性学习的稀疏邻域约束的联合聚类

蒋超, 许堉坤, 张芮嘉, 安佰龙

蒋超, 许堉坤, 张芮嘉, 安佰龙. 基于类别一致性学习的稀疏邻域约束的联合聚类[J]. 计算机应用与软件, 2024, 41(12): 324-333. DOI: 10.3969/j.issn.1000-386x.2024.12.045
引用本文: 蒋超, 许堉坤, 张芮嘉, 安佰龙. 基于类别一致性学习的稀疏邻域约束的联合聚类[J]. 计算机应用与软件, 2024, 41(12): 324-333. DOI: 10.3969/j.issn.1000-386x.2024.12.045
Jiang Chao, Xu Yukun, Zhang Ruijia, An Bailong. JOINT CLUSTERING OF SPARSE NEIGHBORHOOD CONSTRAINTS BASED ON CLASS CONSISTENCY LEARNING[J]. Computer Applications and Software, 2024, 41(12): 324-333. DOI: 10.3969/j.issn.1000-386x.2024.12.045
Citation: Jiang Chao, Xu Yukun, Zhang Ruijia, An Bailong. JOINT CLUSTERING OF SPARSE NEIGHBORHOOD CONSTRAINTS BASED ON CLASS CONSISTENCY LEARNING[J]. Computer Applications and Software, 2024, 41(12): 324-333. DOI: 10.3969/j.issn.1000-386x.2024.12.045

基于类别一致性学习的稀疏邻域约束的联合聚类

基金项目: 

国网上海市电力公司项目(SGSHJY00GPJS1800310)。

详细信息
    作者简介:

    蒋超,工程师,主研领域:电力营销计量,线损分析与治理。许堉坤,工程师。张芮嘉,工程师。安佰龙,助理工程师。

  • 中图分类号: TP391.41

JOINT CLUSTERING OF SPARSE NEIGHBORHOOD CONSTRAINTS BASED ON CLASS CONSISTENCY LEARNING

  • 摘要: 为了充分挖掘特征结构,提升聚类性能,提出一种基于类别一致性学习的稀疏邻域约束的联合聚类方法。将联合聚类问题转化为附加对偶正则化子的非负矩阵三因式分解,在非负矩阵分解的基础上,增加两个正则化子,使数据关联性与标签分配一致;提出一种目标优化的乘法交替方案,从理论上证明了算法的收敛性和正确性。利用三种评价方法在六个数据集上进行验证,并对其参数敏感性进行分析。实验结果表明,该算法具有较优的聚类性能。
    Abstract: In order to fully mine the feature structure and improve the clustering performance, a joint clustering method with sparse neighborhood constraints based on category consistency learning is proposed. The joint clustering problem was transformed into a tri-factorization of nonnegative matrix with dual regularizer. Based on the nonnegative matrix decomposition, two regularizers were added to make the data relevance consistent with the label assignment. A multiplication alternation scheme for objective optimization was introduced, and the convergence and correctness of the algorithm were proved theoretically. The three evaluation methods were verified on six data sets, and their parameter sensitivity was analyzed. Experiments show that the proposed algorithm has better performance.
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-31

目录

    /

    返回文章
    返回