• 中国科技论文统计源期刊(中国科技核心期刊)
  • 中国科学引文数据库(CSCD)来源期刊(2015-2016)
  • 万方数据-数字化期刊群全文收录期刊
  • 美国《乌利希国际期刊指南》收录期刊
  • 全国中文核心期刊(2023)
  • 中国学术期刊综合评价数据库来源期刊
  • 中文科技期刊数据库(全文版)收录期刊
  • 美国《剑桥科学文摘》收录期刊

融合自注意力机制和知识图谱的多任务推荐模型

李宇轩, 郑博, 吴茂念, 孙悦, 朱绍军

李宇轩, 郑博, 吴茂念, 孙悦, 朱绍军. 融合自注意力机制和知识图谱的多任务推荐模型[J]. 计算机应用与软件, 2025, 42(3): 141-148,182. DOI: 10.3969/j.issn.1000-386x.2025.03.020
引用本文: 李宇轩, 郑博, 吴茂念, 孙悦, 朱绍军. 融合自注意力机制和知识图谱的多任务推荐模型[J]. 计算机应用与软件, 2025, 42(3): 141-148,182. DOI: 10.3969/j.issn.1000-386x.2025.03.020
Li Yuxuan, Zheng Bo, Wu Maonian, Sun Yue, Zhu Shaojun. MULTI-TASK RECOMMENDATION MODEL COMBINING SELF-ATTENTION MECHANISM AND KNOWLEDGE GRAPH[J]. Computer Applications and Software, 2025, 42(3): 141-148,182. DOI: 10.3969/j.issn.1000-386x.2025.03.020
Citation: Li Yuxuan, Zheng Bo, Wu Maonian, Sun Yue, Zhu Shaojun. MULTI-TASK RECOMMENDATION MODEL COMBINING SELF-ATTENTION MECHANISM AND KNOWLEDGE GRAPH[J]. Computer Applications and Software, 2025, 42(3): 141-148,182. DOI: 10.3969/j.issn.1000-386x.2025.03.020

融合自注意力机制和知识图谱的多任务推荐模型

基金项目: 

国家自然科学基金青年科学基金项目(61906066);浙江省自然科学基金项目(LQ18F020002)。

详细信息
    作者简介:

    李宇轩,硕士生,主研领域:深度学习,推荐系统。郑博,讲师。吴茂念,教授。孙悦,硕士生。朱绍军,讲师。

    通讯作者:

    朱绍军

  • 中图分类号: TP391

MULTI-TASK RECOMMENDATION MODEL COMBINING SELF-ATTENTION MECHANISM AND KNOWLEDGE GRAPH

  • 摘要: 借助知识图谱提供辅助信息以提升推荐系统性能愈加受到研究者的关注。针对基于知识图谱的推荐算法用户表示较为单一,无法充分挖掘隐藏信息的问题,提出一种融合自注意力机制和知识图谱的推荐模型KSMR。通过自注意力捕获用户交互序列的上下文信息,得到融合兴趣转移的用户向量,采用文本卷积网络实现特征修正与再提取;交替训练推荐任务和知识图谱嵌入任务,达到协同优化的目的。在真实数据集MovieLens-1M与Last.FM上的实验结果表明,模型的点击率预测(CTR)性能相较于对比算法均有明显提升。
    Abstract: Researchers have got increasingly attention to obtain auxiliary information with the help of knowledge graph. Aimed at the problem that recommendation algorithms based on knowledge graph have single user representation and cannot fully mine hidden information, a recommendation model combining self-attention mechanism and knowledge graph (KSMR) is proposed. The context information of user interaction sequence was captured by self-attention mechanism to obtain the user vector fused with interest transfer, and the feature correction and re-extraction were realized by text CNNs. Alternating training was used to combine the knowledge graph embedding task and recommendation task to achieve the purpose of collaborative optimization. Experimental results on real datasets MovieLens-1M and Last.FM show that, the CTR (Click Through Rate) prediction performance of the model has obvious advantages over the comparison algorithms.
计量
  • 文章访问数:  11
  • HTML全文浏览量:  1
  • PDF下载量:  14
  • 被引次数: 0
出版历程

目录

    /

    返回文章
    返回