一种多级别多尺度上下文特征融合的玻璃面分割算法

GLASS SEGMENTATION ALGORITHM BASED ON MULTI-LEVEL & MULTI-SCALE CONTEXTUAL FEATURE FUSION

  • 摘要: 在日常生活中非常常见的透明玻璃或者镜面往往会给计算机视觉任务带来严峻的挑战。因此,提出一种针对玻璃镜面的图像分割模型,并提出多尺度上下文卷积计算(Multi-Scale Contextual Convolution,MSCC)模块来挖掘不同尺度下的玻璃特征且同时不改变特征图的分辨率。实验结果表明,相比于目前主流的最先进算法(State-of-the-Art),该文所提出的模型实现了大幅度的性能改进,充分说明了其在上下文特征表征上的卓越能力。

     

    Abstract: Transparent glass or mirrors, which are very common in daily life, often bring severe challenges to computer vision tasks. Therefore, this paper presents an efficient glass segmentation model, in which a multi-scale contextual convolution (MSCC) module is proposed to mining the glasses features in various scales and remain the feature map's origin resolution. Experimental results demonstrate that the proposed model achieves significant performance boost compared with state-of-the-arts, illustrating the outstanding contextual features representing ability.

     

/

返回文章
返回