基于 GCN 的异构句法驱动汉语语义角色标注

HETEROGENEOUS SYNTAX-AWARE SEMANTIC ROLE LABELING BASED ON GRAPH CONVOLUTIONAL NETWORKS

  • 摘要: 近年来,句法驱动的语义角色标注(Semantic Role Labeling, SRL)受到了广泛的关注。但是,大部分工作只考虑如何利用单个同构句法树信息。考虑到汉语中存在多个人工构建的高质量异构句法树库,提出采用图卷和神经网络(Graph Convolutional Networks, GCN)来刻画多个异构句法树中包含的句法信息,并深入比较多种编码方式,来提升汉语 SRL 的性能。最终,该模型在 CPB 1.0 和 CoNLL-2009 汉语数据集上分别达到了 84.16% 和 85.30% 的 F1 值,均高于编码同构句法树的实验结果,且相比于前人的方法有了显著的提升。

     

    Abstract: Recently, syntax-aware neural semantic role labeling (SRL) has received much attention. However, most of previous syntax-aware SRL works exploit homogeneous syntactic knowledge from a single syntactic treebank. Considering several high-quality publicly available Chinese syntactic treebanks, this paper proposes to extend graph convolutional networks (GCNs) for encoding heterogeneous syntactic knowledge in the heterogeneous dependency trees and makes a through comparison on various encoding methods to improve SRL performance. This model achieved 84.16 and 85.30 F1 on CPB 1.0 and CONLL-2009 Chinese data sets, respectively, both outperforming the corresponding homogeneous syntax-aware SRL models and significantly improving the performance of previous methods.

     

/

返回文章
返回