GMFNet:全局多尺度和多级别的特征融合语义分割网络

GMFNET: GLOBAL MULTI-SCALE AND MULTI-LEVEL FEATURE FUSION NETWORK FOR SEMANTIC SEGMENTATION

  • 摘要: 语义分割网络在编码器-解码器中融合高低水平特征存在以下问题:(1) 在空间和通道中特征提取无法同步,导致特征组合无法获取全局上下文信息;(2) 特征融合无法充分利用高低水平特征图像,导致语义边界模糊。设计全局空间空间全字塔池化,该结构不仅在空间上提取多尺度信息和通道上对图像信息充分利用,还增强编码器阶段的特征重用。设计特征融合注意力模块,在编码器中连接不同阶段的高低水平特征和新特征。实验表明,该算法在Cityscapes数据集上达到了77.92% mIoU。

     

    Abstract: For the semantic segmentation network, the following problems exist in the fusion of low-level and high-level feature in the encoder-decoder: (1) feature extraction in space and channel cannot be synchronized, resulting in feature combinations that cannot obtain global context information; (2) feature fusion cannot be fully utilized low-level and high-level feature images, resulting in blurred semantic boundaries. The global atrous spatial pyramid pooling was designed. This structure not only extracted multi-scale information in space and utilized image information in channels, but also enhanced feature reuse in the encoder stage. A feature fusion attention module was designed to connect low-level and high-level features and new features at different stages in the encoder. Experiments show that the algorithm achieves 77.92% mIoU on the Cityscapes dataset.

     

/

返回文章
返回