结合模糊分级与弱监督学习重建太阳斑点图

RECONSTRUCTION OF SOLAR SPECKLE IMAGE WITH WEAKLY SUPERVISED METHOD BASED ON BLUR HIERARCHY

  • 摘要: 针对云南天文台拍摄的模糊太阳斑点图像使用有监督深度学习算法容易严重过拟合、过分依赖清晰图像等问题,提出一种对模糊数据集进行梯度能量分级和对分级后的数据集进行弱监督重建的方法。该方法利用Scharr算子计算模糊图像的梯度能量,依据能量值对模糊图像进行分级,使得同等级图像的模糊分布基本相同;使用退化模型对分级后的无配对数据集进行模拟退化,再利用训练好的退化模型构建新的配对数据集;将新的配对数据集放入重建网络中进行逆退化学习,实现图像重建。实验结果表明,该方法不仅能防止模型严重过拟合,而且减少对参考图像的依赖,重建的图像能够满足太阳斑点图像高分辨率重建的要求。

     

    Abstract: With the supervised deep learning algorithms, it is prone to overfitting when restoring the blurred solar speckle images taken by Yunnan Observatories, and it is over-reliance on reference images. In order to solve the problems, a method for gradient energy-based grading of blurred datasets and weakly supervised image reconstruction for grading datasets is proposed. The method used the Scharr operator to calculate the gradient energy of the blurred image, and classified the blurred image according to the energy value, so that the blurred distribution of the images of the same level was basically the same. We used the degradation model to simulate the degradation of the graded unpaired data set, and then used the trained degradation model to construct new paired data set. We put the new paired data set into the reconstruction network for inverse degradation learning to realize image reconstruction. Experiments show that this method can not only prevent serious overfitting of the model, but also reduce the dependence on reference images, and the reconstructed images can meet the requirements of high-resolution reconstruction of solar speckle images.

     

/

返回文章
返回