基于表示解耦的指定范例图像翻译

EXEMPLAR-BASED IMAGE TRANSLATION BASED ON DISENTANGLED REPRESENTATION

  • 摘要: 传统的图像翻译研究通常假定图像可以被分解为独立的内容和风格表征,但是如何利用风格表示来指导或影响翻译结果的风格仍然是一个难题和挑战。为解决指定范例的图像翻译问题,首次提出在图像翻译框架中引入纹理共现鉴别器,实现风格和内容的解耦并对翻译结果的具体风格进行控制。并通过建立记忆引导的图像块比较机制,进一步提升模型对图像语义的理解。实验结果表明,基于表示解耦的图像翻译方法不仅顺利完成了指定范例的图像翻译任务,并且在传统图像翻译目标上超越了目前最先进的技术的生成质量。

     

    Abstract: Traditional image-to-image translation studies typically assume that images can be decomposed into independent content and style representations. However, effectively utilizing style representations to guide translation outcomes remains challenging. To address exemplar-based image translation, we introduced a texture co-occurrence discriminator into the framework to disentangle style and content while controlling specific translation styles. A memory-guided image patch comparison mechanism was established to further enhance semantic understanding. Experiments demonstrate that the proposed method successfully accomplishes exemplar-based translation tasks and surpasses state-of-the-art techniques in generation quality for conventional translation objectives.

     

/

返回文章
返回