结晶器液位波动与夹渣缺陷相关性特征挖掘

FEATURE MINING OF MOULD LEVEL FLUCTUATION RELATED TO SLAG INCLUSIONS

  • 摘要: 以连续机结晶器为对象,研究其液位波动和夹渣缺陷之间的相关性,为追溯铸坯夹渣缺陷原因提供思路与方法。采用分段聚合近似及低通滤波方法对液位波动信号进行平滑及去噪处理,从时域和频域提取关于液位波动信号的853个特征;利用Kolmogorov-Smirnov及Fisher假设检验方法研究提取特征与夹渣缺陷的相关性,根据Benjamini-Yekutieli方法筛选特征;使用加权随机森林模型对不同特征筛选方法进行建模分析。实验结果表明,使用挖掘出的特征建模,模型效果好于使用原始时序信号建模的1D-CNN模型,且具有更好的可解释性。根据分布图,可进一步定性定量分析夹渣缺陷产生的原因,给出结晶器液位控制工艺建议。

     

    Abstract: This study investigates the correlation between mould level fluctuation and slag inclusion defects to trace defect origins. Fluctuation signals were processed with piecewise aggregate approximation (PAA) and low-pass filtering for smoothing and denoising. 853 time-frequency domain features were extracted. The Kolmogorov-Smirnov test and Fisher's exact test analyzed feature-defect correlations, with Benjamini-Yekutieli method for feature selection. A weighted random forest model evaluated feature mining methods. Experimental results demonstrate that the mined-feature model outperforms 1D-CNN using raw signals with enhanced interpretability. Distribution diagrams enable quantitative analysis of slag inclusion causes, supporting optimized mould level control strategies.

     

/

返回文章
返回