Citation: | Wei Rengan, Feng Shuang, Kong Huafeng. LIGHTWEIGHT TARGET DETECTION FOR UAV AERIAL IMAGE BASED ON OMNI-DIMENSIONAL DYNAMIC CONVOLUTION[J]. Computer Applications and Software, 2024, 41(5): 158-165,182. DOI: 10.3969/j.issn.1000-386x.2024.05.025 |
[1] |
Zong H S,Pu H B,Zhang H L,et al.Small object detection in UAV image based on slicing aided module[C]//4th International Conference on Power,Intelligent Computing and Systems,2022:366-370.
|
[2] |
Kattenborn T,Leitloff J,Schiefer F,et al.Review on Convolutional Neural Networks(CNN) in vegetation remote sensing[J].ISPRS Journal of Photogrammetry and Remote Sensing,2021,173:24-49.
|
[3] |
Tan L,Lv X,Lian X,et al.YOLOv4_Drone:UAV image target detection based on an improved YOLOv4 algorithm[J].Computers & Electrical Engineering,2021,93:107261.
|
[4] |
陈旭,彭冬亮,谷雨.基于改进YOLOv5s的无人机图像实时目标检测[J].光电工程,2022,49(3):69-81.
|
[5] |
吴靖,韩禄欣,沈英,等.基于改进YOLOv4-tiny的无人机航拍目标检测[J].电光与控制,2022,29(12):112-117.
|
[6] |
Li C,Zhou A,Yao A.Omni-dimensional dynamic convolution[C]//International Conference on Learning Representations,2022,118(1):1-20.
|
[7] |
Dong Y N,Liu Q W,Du B,et al.Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification[J].IEEE Transactions on Image Processing,2022,31:1559-1572.
|
[8] |
Chen J R,Kao S H,He H,et al.Run,don't walk:Chasing higher FLOPS for faster neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition,2023:12021-12031.
|
[9] |
Ge Z,Liu S T,Li Z M,et al.OTA:Optimal transport assignment for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition,2021:303-312.
|
[10] |
韩佼志,王红雨,吴昌学,等.基于YOLOv5的单目视觉无人机检测与定位方法[J].飞行力学,2023,41(3):61-66,81.
|
[11] |
Xiao J S,Guo H W,Zhou J,et al.Tiny object detection with context enhancement and feature purification[J].Expert Systems with Applications,2023,211:118665.
|
[12] |
Zheng Z H,Wang P,Liu W,et al.Distance-IoU loss:Faster and better learning for bounding box regression[C]//AAAI Conference on Artificial Intelligence,2020,34(7):12993-13000.
|
[13] |
Tan M X,Pang R M,Le Q V.EfficientDet:Scalable and efficient object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition,2020:10778-10787.
|
[14] |
Howard A,Sandler M,Chu G,et al.Searching for MobileNetv3[C]//IEEE International Conference on Computer Vision,2019:1314-1324.
|
[15] |
Ma N,Zhang X,Zheng H T,et al.ShuffleNetv2:Practical guidelines for efficient CNN architecture design[C]//15th European Conference on Computer Vision,2018:116-131.
|
[16] |
Han K,Wang Y H,Tian Q,et al.GhostNet:More features from cheap operations[C]//IEEE Conference on Computer Vision and Pattern Recognition,2020:1580-1589.
|
[17] |
Pasechnyuk D A,Persiianov M,Dvurechensky P,et al.Algorithms for Euclidean-Regularised optimal transport[C]//14th International Conference on Optimization and Applications,2023:84-98.
|
[18] |
Du D W,Zhu P F,Wen L Y,et al.VisDrone-DET2019:The vision meets drone object detection in image challenge results[C]//IEEE International Conference on Computer Vision Workshops,2019:213-226.
|
[19] |
Lin T Y,Goyal P,Girshick R,et al.Focal loss for dense object detection[C]//IEEE International Conference on Computer Vision,2017:2980-2988.
|
[20] |
Liu W,Anguelov D,Erhan D,et al.SSD:Single shot MultiBox detector[C]//14th European Conference on Computer Vision,2016:21-37.
|
[21] |
Sun X D,Wu P C,Hoi S.Face detection using deep learning:An improved faster RCNN approach[J].Neurocomputing,2018,299:42-50.
|
[22] |
Zaidi S A,Ansari M S,Aslam A,et al.A survey of modern deep learning based object detection models[J].Digital Signal Processing,2022,126:103514.
|
[23] |
Liu B B,Huang J Y,Lin S,et al.Improved YOLOX-S abnormal condition detection for power transmission line corridors[C]//3rd International Conference on Power Data Science,2021:13-16.
|
[24] |
Hassan N I,Tahir N M,Zaman F H,et al.People detection system using YOLOv3 algorithm[C]//10th IEEE International Conference on Control System,Computing and Engineering,2020:131-136.
|
[25] |
Hussain M.YOLO-v1 to YOLO-v8,the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J].Machines,2023,11(7):677.
|