基于双通道深度强化学习的数据库索引推荐技术

INDEX RECOMMENDATION BASED ON DUAL CHANNEL DQN

  • 摘要: 针对索引推荐中存在的未能利用 SQL 流量特征以及规则方法机械性等问题,提出一种基于 DQN 模型的新型双通道索引推荐模型 DC-DQN (Dual Channel Deep Q-Network)。该模型将索引选择度与 SQL 查询类型特征通过两个单独的通道独立训练,通过全连接层进行信息融合,从而选择符合三星索引特征的候选索引。公开测试集 TPC-H 上的实验测试表明,DC-DQN 相较增加全量索引取得几乎同样的性能提升效果,同时在构造特定查询流量下,DC-DQN 相对之前的方法取得了更好的效果。

     

    Abstract: Aiming at the problems such as unused the characteristics of SQL workload and the mechanical rule method during index recommendation, we propose a DQN-based dual channel index recommendation model (Dual Channel Deep Q-Network, DC-DQN). The index selectivity and SQL query type features wre trained independently through two separate channels and the information fusion was carried out through the full connection layer, so as to select the candidate index that better matches three-star index. The experimental results on TPC-H dataset show that DC-DQN performs as good as having all indexes and under the construction of specific query workload, DC-DQN performs better than the previous method.

     

/

返回文章
返回