基于 SENet-BiLSTM 的心律失常识别

ARRHYTHMIA RECOGNITION BASED ON SENet-BiLSTM

  • 摘要: 针对深度学习技术在心律失常分类模型中存在识别精度低、泛化能力弱的问题,提出一种基于 SENet-BiLSTM 的心律失常识别方法。该方法避免了复杂的数据预处理,使用 SE-Block 通道注意力机制结合 6 层卷积神经网络作为特征提取器,并采用双向长短时记忆网络作为特征学习器,构造新型深度网络模型实现五类心律失常的分类识别。该文使用 MIT-BIH 心律失常数据库在患者间范式下进行测试,并与 CNN、BiLSTM 和 CNN-BiLSTM 进行患者间范式的对比分析,结果显示该方法整体分类精度达到 97.25%,模型具有较好的泛化能力。

     

    Abstract: Deep learning technology shows the problems of low recognition accuracy and weak generalization ability in the arrhythmia classification model. This paper presents an arrhythmia recognition method based on SENet-BiLSTM. This method avoided complex data preprocessing, used a SE-block channel attention mechanism combined with a 6-layer convolutional neural network as a feature extractor, and adopted a bi-directional long short-term memory network as a feature learner to construct a new deep network model to achieve the classification and recognition of five types of arrhythmias. This paper used the MIT-BIH arrhythmia database to test in the inter-patient paradigm and conducted a comparative analysis with CNN, BiLSTM and CNN-BiLSTM. The results show that the overall classification accuracy of the proposed method is 97.25%, which has a better generalization ability.

     

/

返回文章
返回