FCTransNet: 面向医学图像分割的全尺度通道 Transformer 网络

FCTRANSNET: A FULL-SCALE CHANNEL TRANSFORMER NETWORK FOR MEDICAL IMAGE SEGMENTATION

  • 摘要: 传统医学图像分割模型的编解码器之间仍然存在不兼容。针对这一问题,提出一个高效、强大的网络 FCTransNet (Full-scale Channel Transformer Network)。FCTransNet 遵循了成功的 U 型结构设计且有两个吸引人的模块:1) 使用全尺度通道 Transformer (Full-scale Channel Transformer) 代替跳跃连接,通过学习编码器特征的序列表示在全尺度上探索丰富的全局上下文,弥补编解码器之间的语义鸿沟。2) 采用多个不同接收域的卷积序列增强编码器,在各尺度上提取多样性的局部语义特征。在 Synapse 多器官分割数据集和 ACDC (Automated Cardiac Diagnosis Challenge) 数据集上的实验结果表明,FCTransNet 的性能优于其他最新的方法。

     

    Abstract: There is still incompatibility between codecs of the traditional medical image segmentation model. To solve this problem, this paper proposes an efficient and powerful full-scale channel transformer network (FCTransNet). FCTransNet followed the successful U-shaped architecture design and had two appealing designs: 1) A full-scale channel transformer (FCTrans) was utilized instead of skip connections. It explored a rich global context at full scale by learning sequence representations of encoder features to bridge the semantic gap between codecs. 2) Multiple convolution sequences with different receptive fields were used to enhance the encoder and extract more diverse local semantic features at each scale. Experimental results on the Synapse multi-organ segmentation dataset and ACDC (Automated Cardiac Diagnosis Challenge) dataset show that the performance of FCTransNet is better than other latest methods.

     

/

返回文章
返回