基于多级特征重用的实时语义分割算法

REAL-TIME SEMANTIC SEGMENTATION ALGORITHM BASED ON MULTI-LEVEL FEATURE REUSE

  • 摘要: 实时语义分割网络未充分考虑上下文信息与网络结构的关系且对特征信息利用不足而导致分割粗糙的问题,提出一种基于多级特征重用的实时语义分割算法 (MFRNet)。该算法设计一种轻量级的非对称残差注意力模块 ARAM 来提取丰富的上下文信息和关键特征,提出采用两个高效特征融合模块以自上而下方式有效融合编码器高低不同层级特征,增强特征重用性,优化分割效果。该算法在 Cityscapes 和 CamVid 数据集上分别获得 72.6% 和 67.3% 的分割精度,98 帧 /s 和 130 帧 /s 的推理速度。实验结果表明,该算法能够保证实时分割的情况下提升分割精度,相较于近年来的实时语义分割算法也表现出一定的优势。

     

    Abstract: The real-time semantic segmentation network does not fully consider the relationship between contextual information and network structure and makes insufficient use of feature information, resulting in rough segmentation. In order to solve the problems, a real-time semantic segmentation network based on multi-level feature reuse (MFRNet) is proposed. A lightweight asymmetric residual attention module (ARAM) was designed to extract rich contextual information and key features. Two efficient feature fusion modules were used to effectively fuse the features of different levels of encoder in a top-down manner, so as to enhance the feature reuse and optimize the segmentation effect. On the Cityscapes and CamVid datasets, the proposed MFRNet achieved 72.6% and 67.3% segmentation precision, 98 FPS and 130 FPS inference speed, respectively. The experimental results show that the proposed algorithm can improve the precision while ensuring real-time segmentation, and it also shows certain advantages compared with recent real-time semantic segmentation algorithms.

     

/

返回文章
返回